GROUNDWATER MONITORING PROGRAM
EARLY WARNING LEVEL ASSESSMENT (2016)

Groundwater Management Program

Prepared by
Cami Apfelbeck
Water Resources Specialist, M.S. Geological Sciences

Christian Berg
Water Resources Technician

City of Bainbridge Island
Public Works
Water Resources Program

July 2017
Cover photo: Kate Matthews, Water Resources Intern, measuring well water level. Photo taken by Christian Berg, Water Resources Technician, City of Bainbridge Island.
Acknowledgements

The authors would like to thank Charles Krumheuer, City Operations and Maintenance Supervisor, Martin Sebren, Kitsap Public Utility District Hydrogeologist, and Michael Scrafford, Aspect Consulting Associate Analyst/Data Scientist, for technical contribution and data management and assessment assistance.

A special thank you to all the well owners who participate in the monitoring network, allowing a consistent, long-term examination of groundwater status and trends to safeguard the Island's drinking water supply.

Citation

Purpose

This assessment is only a comparison of monitoring data collected over the last ten-year period (2007 -2016) against the Groundwater Management Program’s Early Warning Levels (EWLs) for safe yield and seawater intrusion, any exceedances of which trigger follow-up investigation and study. This is not an in-depth hydrogeological assessment of historical trends in water level, quality, and production.
Table of Contents

1.0 Introduction .. 5
 1.1 Early Warning Levels (EWLs) .. 5
 1.2 The Aquifer System ... 5
 1.3 The Monitoring Well Network .. 6
2.0 Findings .. 7
 2.1 Water Levels .. 7
 2.1.1 Perched Aquifer .. 8
 2.1.2 Semi-Perched Aquifer .. 8
 2.1.3 Sea Level Aquifer .. 9
 2.1.4 Glaciomarine Aquifer .. 10
 2.1.5 Fletcher Bay Aquifer .. 10
 2.1.6 Bedrock Aquifer ... 11
 2.2 Chloride .. 11
 2.2.1 Perched Aquifer .. 12
 2.2.2 Semi-Perched Aquifer .. 12
 2.2.3 Sea Level Aquifer .. 12
 2.2.4 Glaciomarine Aquifer .. 13
 2.2.5 Fletcher Bay Aquifer .. 13
 2.2.6 Bedrock Aquifer ... 13
3.0 Confirmation Sampling and Investigation .. 14
 3.1 Seabold Area .. 14
 3.2 Hidden Cove Utilities Shop Well .. 14
 3.3 Island Utilities Well 1 ... 15
4.0 References ... 16
Figures

Figure 1. Monitoring Well Network
Figure 2. Perched Aquifer Water Levels
Figure 3. Semi-Perched Aquifer Water Levels
Figure 4. Sea Level Aquifer Water Levels (North)
Figure 5. Sea Level Aquifer Water Levels (Central)
Figure 6. Sea Level Aquifer Water Levels (South)
Figure 7. Sea Level Aquifer Water Levels (Head of the Bay Wellfield)
Figure 8. Glaciomarine Aquifer Water Levels
Figure 9. Fletcher Bay Aquifer Water Levels
Figure 10. Bedrock Aquifer Water Levels
Figure 11. Chloride by Season and Aquifer

Tables

Table 1. Monitoring Well Network

Appendices

Appendix A: Purpose and Definition of EWLs
Appendix B: Well Hydrographs
Appendix C: Historic Chloride Concentrations
1.0 INTRODUCTION

Groundwater is the sole source of drinking water on Bainbridge Island. Primary groundwater-related concerns for the Island are the risk of seawater intrusion (migration of saltwater into the freshwater drinking supply) and pumping rates above the aquifer system’s safe yield (amount of water that can be removed from the aquifer system without causing adverse effects).

1.1 Early Warning Levels (EWLs)

Early Warning Levels (EWLs) are quantifiable measures for initial evaluation of data that provide timely warning of a potentially-developing issue before a problem becomes acute. If an EWL is exceeded, additional investigation is conducted to include problem-specific technical data review and analysis to confirm data validity. Additional sampling and field investigation are performed to confirm a potential problem and, if confirmed, identify the extent and potential causes for the exceedance.

The EWLs established for the City’s monitoring program are described in Section 2.0. Refer to Appendix A for a discussion on the purpose and definition of EWLs.

1.2 The Aquifer System

Bainbridge Island has six principal aquifers (KW/RN, 2000), the extents of which were refined in the U. S. Geological Survey’s (USGS) Conceptual Model and Numerical Simulation of the Groundwater-Flow System of Bainbridge Island, Washington (Frans et al., 2011).

Perched Aquifer (PA)—This aquifer is comprised predominantly of Vashon Advance glacial outwash (Qva). The top of the aquifer ranges from sea level to more than 300 feet above mean sea level [ft MSL], with a thickness of 20 to 200 feet, and is utilized predominantly by domestic wells. About 4 percent of wells are reported to be completed in this unit.

Semi-Perched Aquifer (SPA)—The Semi-Perched Aquifer exists within permeable interbeds (QC1pi) of the upper confining unit (QC1). The top of the aquifer ranges from sea level to more than 200 ft MSL, with a thickness of 10 to 50 feet. About 25 percent of wells are reported to be completed in this unit.

Sea Level Aquifer (SLA)—The Sea Level Aquifer (QA1) is extensive, widely used, and mostly confined by QC1. The top of the aquifer ranges from -200 to 200 ft MSL, with a thickness of 10 to 50 feet. About 53 percent of wells are completed in this aquifer.

Glaciomarine Aquifer (GMA)—This aquifer consists of water-bearing units within a thick sequence of fine-grained glaciomarine drift (QA2). The top of the aquifer ranges between more than -500 to -300 ft MSL, with a typical thickness of 20 to 300 feet. Several of Bainbridge Island’s production wells and at least 4 domestic wells are completed in this aquifer, representing about 2 percent of wells.
Fletcher Bay Aquifer (FBA)—This aquifer (QA3) is the deepest identified aquifer on Bainbridge Island. Several large production wells are completed in this aquifer. The top of the aquifer ranges between more than -900 to slightly less than 600 ft MSL, with a typical thickness of 50 to 300 feet. While representing only about 1 percent of wells on Bainbridge Island, the metered Kitsap Public Utility District (KPUD) and City wells provide approximately 30 percent of the estimated total Island groundwater production.

Bedrock Aquifer (BED)—Less than 1 percent of the wells are completed in the sedimentary Blakely Harbor and Blakeley formations on the south end of Bainbridge Island which form this aquifer.

Other wells on Bainbridge Island (about 15 percent) are either completed in water bearing zones within confining units or have an indeterminate aquifer completion zone.

1.3 The Monitoring Well Network

The City’s monitoring well network includes both public and private wells and is distributed Island-wide across the six Bainbridge Island aquifers (Figure 1). The number of wells in the network may change should well owners choose to drop out of the network or when additional public wells are added to the network when they come under the ownership or management of either the City or KPUD. The current network includes 86 monitoring wells, and their aquifer distribution is as follows: 16 in the Perched Aquifer, eight in the Semi-Perched Aquifer, 43 in the Sea Level Aquifer, six in the Glaciomarine Aquifer, 12 in the Fletcher Bay Aquifer, and one in the Bedrock Aquifer. Wells may be monitored for water level only, chloride only, or both water level and chloride (Table 1).

In assigning wells in the monitoring network to a given aquifer, the determination of the aquifer was made by comparing screen elevation with aquifer elevation and by comparing well location with lateral extent of an aquifer as shown in the 2000 Level II Basin Assessment (KW/RN, 2000) or the Conceptual Model and Numerical Simulation of the Groundwater-Flow System of Bainbridge Island, Washington (Frans et al., 2011).
2.0 FINDINGS

2.1 Water Levels

Water levels in a well vary under different conditions. After a pump is turned on to extract water, the water level in the well will began to lower (drawdown). These are “pumping” water levels. After the pump is turned off, the water level in the well will begin to rise or recover. These levels are “rising” or “recovery” levels. Pumping in a nearby well in the same aquifer can cause drawdown and recovery effects as well. Once the pump is turned off and water level has returned to its original position and remains steady, it is considered static. This level is called the “static” water level.

Water professionals collect different types of water level data for specific purposes. Well drillers collect water levels under all conditions to assess viability of the well (can it produce good-quality water at a rate sufficient to supply the demand). Production wells are routinely monitored throughout varying pumping conditions and recovery periods to assess well/pump capacity and performance, assess aquifer response, and manage distribution.

Water resources managers collect static water levels for groundwater status and long-term trend analysis. As part of the data quality validation process for this assessment, all water level data were thoroughly examined to isolate static water levels from all other water level measurements. Any non-static water level data or data determined to be invalid due to faulty measurement method or instrumentation were removed from the data set before trend assessment and comparison to the EWL.

The City’s Groundwater Monitoring Program defines the aquifer safe yield EWL as a declining rate of ½ foot or more per year over a ten-year period that cannot be explained by variations in precipitation (Aspect, 2009). As the EWL examines a ten-year period, calculations were only applied to wells that had at least eight years of data in the last ten years (2007 – 2016). Water level trend calculations were based on an ordinary least squares fit to monthly averages of all static water level data.

It is important to note that reviewing multiple data sets over a constrained period of time such as the ten-year period specified in the safe yield EWL can be useful, but it has some limitations, as well. One significant limitation is that it isolates the current ten-year period from the longer, historical record, where such exists, that may reveal that the current increasing or declining trend may be part of a natural, longer-term fluctuation in water level and not a long-term trend. It is important to consider the longer-term record of all water levels, where such exists, when conducting follow up investigation.

To determine variations in precipitation, the City used a Cumulative Departure Precipitation (CDP) curve which represents the running total of differences between monthly rainfall and the average rainfall over the ten-year period of measurement.
Downward trends in the CDP indicate periods of below average precipitation and upward trends indicate periods of above average precipitation. Groundwater levels naturally rise during above average precipitation and fall during below average precipitation. Therefore, under natural conditions, well water levels should be rising and falling similarly to the CDP curve. For this comparison, the CDP curve is plotted along with each well’s hydrograph (water level data plot) in Appendix B.

Overall water levels did not indicate any aquifer-wide trends, and most water level trends were relatively steady or increasing. However, one well appeared to exceed the safe yield EWL. This well was identified in previous assessments (Aspect, 2009 and Aspect, 2015). Though no other wells exceeded the EWL, some individual wells showed slight to moderate water level declines over the last ten years. To determine if these are representative of a developing problem rather than natural variations in water levels over time, these wells warrant continued monitoring and assessment.

Observations for each aquifer are discussed in further detail below and are shown in individual well hydrographs in Appendix B and by aquifer in Figures 2-10.

2.1.1 Perched Aquifer

All 16 wells monitored in the Perched Aquifer are monitored for water level. No water level trends in this aquifer exceeded the safe yield EWL. Water level trends in this aquifer showed a strong correlation with rainfall both seasonally and long-term, consistent with the CDP curve. Only one well, a small community exempt well near Point White (24N/02E-05R01), had a declining trend (-0.04 feet per year) over the last ten year period. This trend is negligible and not of concern at this time.

All other wells had increasing water level trends ranging from 0.04 to 0.59 feet per year over the last ten years.

2.1.2 Semi-Perched Aquifer

All eight wells monitored in the Semi-Perched Aquifer are monitored for water level. No water level trends in this aquifer exceeded the safe yield EWL. Water level trends in this aquifer showed a strong correlation with rainfall both seasonally and long-term, consistent with the CDP curve. Only one well, the Hidden Cove Utilities Shop well (24N/02E-04G03) located at the City’s Operations and Maintenance Facility southwest of the Hidden Cove Road/Hwy 305 interchange, had a declining trend (-0.08 feet per year) over the last ten year period. This trend is negligible, and there were only 4 water level measurements from this well since 2010. Therefore, confidence in this trend calculation is low. Groundwater Management Program staff will add this well to routine monthly monitoring to better track long-term trends.

All other wells had increasing water level trends ranging from 0.01 to 0.29 feet per year over the last ten years.
2.1.3 Sea Level Aquifer

32 of the 43 wells monitored in the Sea Level Aquifer are monitored for water level. No wells in this aquifer exceeded the safe yield EWL. One well had a stable trend (0.0 feet per year over the last ten years), and 21 wells had increasing water level trends ranging from 0.02 to 0.68 feet per year over the last ten years. Seven wells had declining trends ranging from -0.02 (negligible) to -0.42 feet per year in the last ten-year period.

KPUD’s North Bainbridge Well 06 (25N/02E-09K02) demonstrated a declining trend of -0.02 feet per year over the last ten years. This is negligible, and co-located wells in the same aquifer (North Bainbridge Wells 03 and 07) have increasing trends of 0.06 and 0.39, respectively. Therefore, North Bainbridge Well 06 is not a concern at this time.

Water level in two private exempt wells with apparent declining trends were measured using two different measurement methods during the assessment period which may have an influence on trend calculations. Measurement method in the first well (25N/02E-21P03) near the High School Road/Fletcher Bay Road intersection changed twice from steel tape to sonic water level meter, then back to steel tape. The sonic level measurements, which tend to be less precise, were removed from the record which left a significant gap in the data record and resulted in a declining water level trend of -0.42 feet per year. Although this does not exceed the EWL, it merits continued monitoring. Continued monitoring of this well consistently using the steel tape method, as planned, will determine if this trend continues over time.

The steel tape method was also used until 2009 in the second private exempt well (25N/02E-22C01) located off NE Paulanna Lane with a declining trend of -0.2 feet per year over the last ten years. Due to depth of the well, the measurement method switched to a sonic water level meter which has less precision. This may influence trend calculations. Continued monitoring of this well consistently using the sonic water level meter, as planned, will determine if there is a consistent trend in water level over time.

The Bainbridge Island Landfill well (25N/02E-33C) water level trend was -0.37 feet per year over the last ten years. City staff are investigating water use on the site and production from a nearby public water system to determine possible influences on water level in this well. Continued monitoring is warranted.

Two KPUD public water system wells also had declining trends that, although don’t exceed the safe yield EWL, warrant continued monitoring and assessment. The Harbor Crest well (25N/02E-34C03), located near the southern Eagle Harbor shoreline, had an apparent declining water level trend of -0.41 feet per year over the last ten years. In recent email communication Martin Sebren, KPUD hydrogeologist, agreed that there appeared to be a decline, but felt that the amount of “chatter” in the monthly measurements caused some uncertainty in the rate of decline (ddt June 28, 2017). Therefore, continued monitoring and assessment is warranted for this well. He also reported that an upgraded flow meter was installed in the Harbor Crest well in 2016 which may account for some of the appearance of production increase in 2016 (see individual well hydrograph in Appendix B).
The second well, the Island Utilities Monitoring Well (25N/02E-34F06), also located south of Eagle Harbor, had an apparent declining water level of -0.34 feet per year over the last ten year period. Mr. Sebren reported that this well is a dedicated water level monitoring well for the Sea Level Aquifer. He felt that the monthly water level data were of good quality, and KPUD will continue to monitor this well for long-term trends.

Wing Point COBI (25N/02E-26B01), one of two wells located on the Wing Point Golf Course, had a declining trend of -0.37 feet per year over the last ten years. Based upon field observations, it is likely some of the water levels reported were levels under the influence of pumping from the second well to support irrigation. This well will continue to be monitored.

The three wells currently monitored for water level in the City’s Head of the Bay wellfield (2, 3, and 5) began water level monitoring in 2013. These wells have less than eight years of data in the last ten year period, so a meaningful trend could not be calculated as part of this assessment.

2.1.4 Glaciomarine Aquifer

Five of the six wells monitored in the Glaciomarine Aquifer are monitored for water level. No water level trends in this aquifer exceeded the safe yield EWL. Only one well, a private exempt well (25N/02E-29P01) located off Crystal Springs Drive, showed a declining trend of -0.22 feet per year over the last ten year period. Though this well did not exceed the EWL, it bears continued monitoring. The well lies on the shoreline within approximately 50 feet of mean high tide, so is potentially influenced by tides. Tidal elevation will be tracked along with water levels in the future to observe any apparent correlation that may be confounding water level trend calculations.

All other wells had increasing water level trends ranging from 0.02 to 0.5 feet per year over the last ten years.

2.1.5 Fletcher Bay Aquifer

Nine of the 12 wells monitored in the Fletcher Bay Aquifer are monitored for water level. Five wells had increasing water level trends ranging from 0.13 to 0.39 feet per year over the last ten years. Two wells had negligible declining trends and are not a concern at this time. These are North Bainbridge 10 (25N/02E-11E) at -0.01 feet per year and Sands Road 2 (25N/02E-21J07) at -0.08 feet per year.

KPUD's North Bainbridge Well 09 (25N/02E-096G04) had a declining trend of -0.40 feet per year over the last ten years. Previous assessments indicated that this well exhibited water level drops when it first went into production in 1994 (Aspect, 2009), but exhibited relatively stable water levels in more recent years (Aspect, 2015). Martin Sebren, KPUD hydrotechnologist, shared that continuous monitoring data for North Bainbridge Well 9, which are more precise for water level trend assessment, demonstrate no decline in water level. Unfortunately, those data were not vetted in time for inclusion in the dataset provided to
the City for this assessment. However, these monitoring data will be included in the next assessment.

The only well to exceed the safe yield EWL was KPUD’s Island Utilities Well 1 (25N/02E-34F07) with a trend of -0.69 feet per year over the last ten years. After examining historical water level and production data for this well and co-located wells, Mr. Sebren considered this a localized decline in water levels that has not yet been fully assessed (telephonic communication, August 19, 2016). See Section 3.3 for further discussion regarding this well.

2.1.6 Bedrock Aquifer

As water level fluctuations in a bedrock aquifer are driven by more complicated geology than that found in typical sand and gravel aquifers like the other Bainbridge Island aquifers, applying the safe yield EWL to this aquifer may not be an appropriate application of the EWL. Only one well in this aquifer is monitored for water level, and the trend for this well did not exceed the safe yield EWL.

2.2 Chloride

Chloride concentration in groundwater is the most common indicator used to assess saltwater intrusion which is the migration of saltwater into freshwater drinking supplies. For land masses surrounded by marine water like Bainbridge Island this process is called seawater intrusion. Intrusion along the shoreline can be a natural phenomenon, but it can also be caused by overpumping of groundwater which pulls the saltwater into the well or aquifer.

The City’s Groundwater Monitoring Program defines the seawater intrusion EWL as \textit{a chloride concentration at or above 100 mg/L or any increasing trend in chloride concentration} (Aspect, 2009). The 100 mg/L level is based on Washington State Department of Ecology’s draft Seawater Intrusion Policy (DOE, 1990).

A determination of an increasing trend requires at least four consecutive samples or samples taken over at least a one-year period with seasonality taken into account. Chloride concentration can vary between the wet season and the dry season. Therefore, to take seasonality into account, the City separated chloride data by season before comparing concentration trends to the EWL (Figure 11).

Similar to the safe yield EWL assessment, this approach to chloride concentration assessment can come with some limitations. For example, small increases in chloride concentration over four years may exceed the EWL, but the longer-term record may show that this fluctuation is part of the natural behavior in that well. It is important to consider the longer-term record, where such exists, when conducting follow up investigation.
As part of the data quality validation process, all unusual data values that appeared to fall outside of the norm were thoroughly investigated. All data identified as either outliers (meaning all concentrations before and after were significantly different) or invalid due to faulty sampling or analysis method were removed from the data set before comparison to the EWL. Chloride concentrations are plotted on the well hydrographs in Appendix B for wells in which chloride is monitored.

No chloride concentrations measured for this assessment period exceeded 100 mg/L. Chloride concentrations in all aquifers were low (usually less than 21 mg/L). However, one well in the Semi-Perched Aquifer demonstrated an increasing trend that exceeded the EWL. This is discussed in more detail in Section 2.2.2.

For most private exempt wells, there is a small jump in chloride concentration (1-4 mg/L) between the 2007/2008 data collected by the USGS and the City’s data beginning in 2012. As this jump was observed in most of the private well data across all aquifers, it was suspected that it was caused by a difference in analytical method rather than an actual increase in chloride concentrations. Lonna Frans, USGS, confirmed that the USGS used field test kits for the 2007/2008 data rather than laboratory analysis which is the City’s preferred method (email dtd May 16, 2017). Therefore, the general increase between the 2007/2008 data and 2012 data is not considered an increase for EWL assessment.

For discussion about historic chloride concentrations that exceed the EWL beyond the period of this assessment, please refer to Appendix C.

2.2.1 Perched Aquifer

Six wells in the Perched Aquifer are monitored for chloride. Chloride concentrations ranged from 2.5 mg/L to 11.3 mg/L, and no wells in this aquifer exceeded the EWL.

2.2.2 Semi-Perched Aquifer

Four wells in the Semi-Perched Aquifer are monitored for chloride. Chloride concentrations ranged from 2.35 mg/L to 8.34 mg/L.

Although chloride concentrations in the City-owned Hidden Cove Utilities Shop well (25N/02E-04G03) were very low (<7.0 mg/L), an increasing trend was observed that exceeded the EWL. As stipulated in the City’s Groundwater Monitoring Program’s guidance, the City will conduct confirmation sampling and follow-up investigation to determine if a problem is developing in this well. For further discussion about this well, refer to Section 3.2.

2.2.3 Sea Level Aquifer

31 wells in the Sea Level Aquifer are monitored for chloride. Chloride concentrations ranged from 1.91 mg/L to 20.4 mg/L, and no wells in this aquifer exceeded the EWL.
2.2.4 Glaciomarine Aquifer

Six wells in the Glaciomarine Aquifer are monitored for chloride, none of which exceeded the EWL. Chloride concentrations ranged from 2.0 mg/L to 6.76 mg/L for all but one well. A private well (25N/02E-29P01) located off Crystal Springs Drive had chloride concentrations from 38 mg/L to 48.3 mg/L with increasing concentration over the last two years. The well lies on the shoreline within approximately 50 feet of mean high tide, so is potentially influenced by tides. Tidal elevation will be tracked along with chloride concentration in the future to observe any apparent correlation that may be confounding trend assessments.

2.2.5 Fletcher Bay Aquifer

Nine wells in the Fletcher Bay Aquifer are monitored for chloride, none of which exceeded the EWL. Chloride concentrations ranged from 2.47 mg/L to 20.0 mg/L.

Slightly elevated chloride concentrations above background were reported for the Fletcher Bay Public Works well (25N/02E-20K04), Sands Road 1 (25N/02E-21J06), and Sands Road 2 (25N/02E-21J07) in 2013 and 2014 in Aspect, 2015. However, as part of data quality validation for this assessment, the City’s Operations and Maintenance Supervisor reported that these samples were erroneously collected after chlorine treatment, and the chlorine generators increased the chloride levels in these samples (email dtd June 21, 2017). This is confirmed by more recent monitoring data which report chloride concentrations for these wells within historic, background values. Therefore, these data were not included in this assessment.

2.2.6 Bedrock Aquifer

Seawater intrusion is generally not a concern for bedrock aquifers. Therefore, the City does not monitor any wells in this aquifer for chloride.
3.0 CONFIRMATION SAMPLING AND INVESTIGATION

In accordance with Groundwater Management Program guidance, an exceedance of an EWL would result in one or both of the following management responses: (1) additional investigations in order to determine if a potential problem is developing, and (2) protective or remedial actions where appropriate. Possible investigations could include additional data evaluation, expanded monitoring, problem specific technical review and analysis, or modeling. Possible actions may include water conservation, limitations on new wells, or development of alternate water supplies (Aspect, 2009).

This section is a discussion of additional investigation completed, in-progress, or planned in response to observed EWL exceedances discussed in Section 2.0 and Appendix C.

3.1 Seabold Area

As discussed in Appendix C, 2006 chloride sampling results from a small neighborhood public drinking water supply well in the Seabold Area exceeded the 100 mg/L early warning level for potential seawater intrusion. In keeping with recommended management actions, the Seabold Potential Seawater Intrusion Investigation is a two-phase project to conduct appropriate and sequential monitoring and investigative activities that, if seawater intrusion is confirmed, will lead to protective or remedial actions. This project is a partnership of the City, KPUD, and the Kitsap Public Health District (KPHD).

Phase I — Phase I is a preliminary desktop assessment of available water quality data for representative wells in the Sea Level Aquifer around the Seabold region encompassing the north end of the Island north of Lovgreen Road to determine if water levels or water quality are indicative of a regional issue developing in the aquifer. This phase is complete and results will be summarized in the final project report.

Phase II — Phase II is a field investigation focused in the area bound by NE Ralston Road to the south, Agate Passage to the north, State Highway 305 to the east, and Port Orchard Passage to the west. Physical and chemical parameters of groundwater in the Sea Level Aquifer will be measured and assessed to confirm/rule out seawater intrusion in the aquifer and, if intruded, determine extent. This phase is tentatively scheduled for later this year. Results will be summarized in a final report.

3.2 Hidden Cove Utilities Shop Well

The Hidden Cove Utilities Shop well provides water to the City’s Operations and Maintenance facilities located off the southwest corner of the Hidden Cove Road/Hwy 305 interchange. The threat of seawater intrusion is usually greatest during the dry season when water use is high and groundwater levels are at their lowest. However, the seawater
intrusion EWL was only exceeded by wet season samples from this well and the values are extremely low (<7mg/L), so it is likely that onsite processes such as septic system influence, or runoff from materials stockpiles or vehicle washing may be responsible for the slight increase rather than seawater intrusion. Follow-up sampling and an investigation of onsite conditions and processes will be conducted later this year.

Historically, the Operations and Maintenance Department monitored water use, water level, and chloride in this well. Although water use and chloride are still monitored, routine water level monitoring ceased after 2010 due to lack of resources. Only four water level measurements were taken since 2010. Therefore, in addition to conducting chloride sampling and focused, on-site investigation, the City’s Groundwater Management Program staff will add this well to the routine monthly water level measurements to track long-term water level trends.

3.3 Island Utilities Well 1

Water level declines in excess of the safe yield EWL have been noted since the City began assessing water level data from this well (Aspect, 2009). As mentioned in Section 2.1.5, Martin Sebren, KPUD hydgeologist, examined historical water level and production data for this well and co-located wells, and also recognized a localized declining trend that has not yet been fully assessed (telephonic communication, August 19, 2016). In more recent communication, Mr. Sebren reported that KPUD increased monitoring of Island Utilities wells 1, 2, and 3 since taking ownership in 2015, and they are in the process of building water level and production data sets to better discern local cause and effect and to design appropriate actions (email dtd June 29, 2017).
4.0 REFERENCES

Figures
Figure 1. Monitoring Well Network
Figure 2. Perched Aquifer, Static Water Level
Figure 3. Semi-Perched Aquifer, Static Water Level
Figure 4. Sea Level Aquifer North, Static Water Level
Figure 5. Sea Level Aquifer Central, Static Water Level
Figure 6. Sea Level Aquifer South, Static Water Level

Water Level (Elevation: Feet above sea level)

Source: [Insert source information here]
Figure 7. Sea Level Aquifer, Head of the Bay Well Field, Static Water Level
Figure 8. Glaciomarine Aquifer, Static Water Level

Water Level (Feet above sea level)

Map showing locations and water level data points.
Figure 9.
Fletcher Bay Aquifer North, Static Water Level

Fletcher Bay Aquifer South, Static Water Level
Figure 10. Bedrock Aquifer, Static Water Level
Figure 11. Chloride By Season

Chloride Season
- Dry (May-Sep)
- Wet (Oct-Apr)
Tables
<table>
<thead>
<tr>
<th>Well ID</th>
<th>Local Number</th>
<th>DOE Tag</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Surface Elevation (NAV88)</th>
<th>Aquifer</th>
<th>Specific Conductivity</th>
<th>Chloride</th>
<th>Water Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloedel Reserve Farm Well</td>
<td>26N/02E-33B01</td>
<td>AAC759</td>
<td>47.70472221</td>
<td>-122.5463889</td>
<td>165</td>
<td>PA</td>
<td></td>
<td></td>
<td>KPUD</td>
</tr>
<tr>
<td>Private</td>
<td>24N/02E-05K03</td>
<td></td>
<td>47.5981882</td>
<td>-122.57504</td>
<td>23</td>
<td>PA</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-17G01</td>
<td></td>
<td>47.6591543</td>
<td>-122.57347</td>
<td>155</td>
<td>PA</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Casey Street Water System</td>
<td>25N/02E-23E03</td>
<td>AAC654</td>
<td>47.643094</td>
<td>-122.51247</td>
<td>167</td>
<td>PA</td>
<td></td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-35M03</td>
<td></td>
<td>47.6136761</td>
<td>-122.51997</td>
<td>172</td>
<td>PA</td>
<td>COBI-Eng</td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Johnson Farm</td>
<td>25N/02E-28F</td>
<td></td>
<td>47.6304475</td>
<td>-122.5542631</td>
<td>154</td>
<td>PA</td>
<td>COBI-Eng</td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-03G01</td>
<td></td>
<td>47.6865255</td>
<td>-122.5263</td>
<td>231</td>
<td>PA</td>
<td>COBI-Eng</td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>North Bainbridge Well 08</td>
<td>25N/02E-11E01</td>
<td>AAC832</td>
<td>47.6742224</td>
<td>-122.5197528</td>
<td>351</td>
<td>PA</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Onorato Water System</td>
<td>25N/02E-17Q01</td>
<td>AAC862</td>
<td>47.6519712</td>
<td>-122.57217</td>
<td>86</td>
<td>PA</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-04D01</td>
<td></td>
<td>47.687152</td>
<td>-122.56123</td>
<td>124</td>
<td>PA</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-10E</td>
<td></td>
<td>47.6744147</td>
<td>-122.5425</td>
<td>94</td>
<td>PA</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Tara Lane Community Well</td>
<td>24N/02E-05R01</td>
<td>AAC032</td>
<td>47.5927776</td>
<td>-122.565</td>
<td>132</td>
<td>PA</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Private</td>
<td>24N/02E-05K01</td>
<td></td>
<td>47.598642</td>
<td>-122.57162</td>
<td>101</td>
<td>PA</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-33B02</td>
<td></td>
<td>47.618819</td>
<td>-122.549247</td>
<td>167</td>
<td>SPA</td>
<td>COBI-Eng</td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-21B</td>
<td></td>
<td>47.6492626</td>
<td>-122.54839</td>
<td>334</td>
<td>SPA</td>
<td>COBI-Eng</td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-23Q03</td>
<td></td>
<td>47.6373367</td>
<td>-122.50643</td>
<td>154</td>
<td>SPA</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Egledale Park</td>
<td>25N/02E-34R05</td>
<td>AAC077</td>
<td>47.6093853</td>
<td>-122.5217</td>
<td>293</td>
<td>SPA</td>
<td>COBI-Eng</td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Ferncliff Water Assoc.</td>
<td>25N/02E-23K</td>
<td></td>
<td>47.64295231</td>
<td>-122.5092888</td>
<td>140</td>
<td>SPA</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Hidden Cove Utilities Shop</td>
<td>25N/02E-04G03</td>
<td>ACR406</td>
<td>47.68722324</td>
<td>-122.5466662</td>
<td>130</td>
<td>SPA</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
</tr>
<tr>
<td>High School Well #2/Commodore</td>
<td>25N/02E-22R02</td>
<td>AAA239</td>
<td>47.6305555</td>
<td>-122.5252778</td>
<td>266</td>
<td>SPA</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
</tr>
<tr>
<td>North Bainbridge Well 01</td>
<td>25N/02E-33G06</td>
<td>AAC826</td>
<td>47.6703558</td>
<td>-122.5483334</td>
<td>125</td>
<td>SPA</td>
<td>COBI-O&M</td>
<td></td>
<td>KPUD</td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-33F01</td>
<td></td>
<td>47.61573172</td>
<td>-122.5547039</td>
<td>304</td>
<td>SPA</td>
<td>COBI-Eng</td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-08G03</td>
<td>AEK777</td>
<td>47.6740726</td>
<td>-122.57134</td>
<td>76</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Bainbridge Island Landfill</td>
<td>25N/02E-33C</td>
<td></td>
<td>47.6206239</td>
<td>-122.535455</td>
<td>269</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-22C01</td>
<td></td>
<td>47.6502164</td>
<td>-122.53608</td>
<td>159</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Bill Point Water Well 3</td>
<td>25N/02E-35J03</td>
<td>AAA238</td>
<td>47.63188736</td>
<td>-122.5027778</td>
<td>139</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td>KPUD</td>
</tr>
<tr>
<td>Cedar Lane Water System</td>
<td>26N/02E-28J02</td>
<td>AAC659</td>
<td>47.7130921</td>
<td>-122.54722</td>
<td>147</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-09D01</td>
<td></td>
<td>47.6364981</td>
<td>-122.56128</td>
<td>29</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-21P03</td>
<td></td>
<td>47.6364798</td>
<td>-122.55584</td>
<td>70</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Fay Bainbridge Park</td>
<td>26N/02E-35G02</td>
<td>47.702141</td>
<td>-122.50893</td>
<td>86</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-17D</td>
<td></td>
<td>47.662085</td>
<td>-122.58093</td>
<td>120</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Former KPUD Island Center TW</td>
<td>25N/02E-21G03</td>
<td>AAA110</td>
<td>47.64694444</td>
<td>-122.583334</td>
<td>300</td>
<td>SLA</td>
<td>KPUD</td>
<td>KPUD</td>
<td>KPUD</td>
</tr>
<tr>
<td>Harbor Crest</td>
<td>25N/02E-34C03</td>
<td>ACD357</td>
<td>47.62083333</td>
<td>-122.5305556</td>
<td>72</td>
<td>SLA</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
</tr>
<tr>
<td>Head of the Bay Well #1</td>
<td>25N/02E-27E15</td>
<td></td>
<td>47.62931422</td>
<td>-122.542349</td>
<td>34</td>
<td>SLA</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
</tr>
<tr>
<td>Head of the Bay Well #1A</td>
<td>25N/02E-27E15</td>
<td>AAC860</td>
<td>47.62914722</td>
<td>-122.5419462</td>
<td>32</td>
<td>SLA</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
</tr>
<tr>
<td>Head of the Bay Well #2</td>
<td>25N/02E-27E16</td>
<td>AAC870</td>
<td>47.62910175</td>
<td>-122.5419004</td>
<td>30</td>
<td>SLA</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
</tr>
<tr>
<td>Head of the Bay Well #3</td>
<td>25N/02E-27E17</td>
<td>AAC871</td>
<td>47.63032187</td>
<td>-122.5419878</td>
<td>47</td>
<td>SLA</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
</tr>
<tr>
<td>Head of the Bay Well #4</td>
<td>25N/02E-27E18</td>
<td>AAC872</td>
<td>47.62894384</td>
<td>-122.5419656</td>
<td>29</td>
<td>SLA</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
</tr>
<tr>
<td>Head of the Bay Well #5</td>
<td>25N/02E-27E19</td>
<td>AAC873</td>
<td>47.62936311</td>
<td>-122.5419302</td>
<td>31</td>
<td>SLA</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
</tr>
<tr>
<td>Head of the Bay Well #6</td>
<td>25N/02E-27E20</td>
<td>AAC874</td>
<td>47.63040714</td>
<td>-122.5419437</td>
<td>42</td>
<td>SLA</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
<td>COBI-O&M</td>
</tr>
<tr>
<td>Island Utilities MW</td>
<td>25N/02E-34F06</td>
<td>AAA108</td>
<td>47.61638991</td>
<td>-122.5235</td>
<td>144</td>
<td>SLA</td>
<td>KPUD</td>
<td>KPUD</td>
<td>KPUD</td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-04B01</td>
<td></td>
<td>47.6910036</td>
<td>-122.54969</td>
<td>83</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td>COBI-Eng</td>
</tr>
<tr>
<td>Well ID</td>
<td>Local Number</td>
<td>DOE Tag</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Surface Elevation (NAV88)</td>
<td>Aquifer</td>
<td>Specific Conductivity</td>
<td>Chloride</td>
<td>Water Level</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>---------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-20L07</td>
<td>AHB475</td>
<td>47.642306</td>
<td>-122.57493</td>
<td>61</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>26N/02E-34R01</td>
<td></td>
<td>47.6954386</td>
<td>-122.52589</td>
<td>101</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-4M02</td>
<td>AEK791</td>
<td>47.6849785</td>
<td>-122.56143</td>
<td>100</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-23G</td>
<td></td>
<td>47.6458618</td>
<td>-122.50976</td>
<td>100</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-14A03</td>
<td></td>
<td>47.6619375</td>
<td>-122.50237</td>
<td>100</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>26N/02E-28G01</td>
<td></td>
<td>47.7190713</td>
<td>-122.54998</td>
<td>122</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-2D00</td>
<td>ABP813</td>
<td>47.647079</td>
<td>-122.57978</td>
<td>114</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Bainbridge Well 03</td>
<td>25N/02E-09H01</td>
<td>AEK853</td>
<td>47.6727778</td>
<td>-122.5463889</td>
<td>87</td>
<td>SLA</td>
<td>KPUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Bainbridge Well 06</td>
<td>25N/02E-09K02</td>
<td>AAA113</td>
<td>47.6715446</td>
<td>-122.544175</td>
<td>91</td>
<td>SLA</td>
<td>KPUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Bainbridge Well 07</td>
<td>25N/02E-09G07</td>
<td>AEK852</td>
<td>47.6725</td>
<td>-122.540056</td>
<td>125</td>
<td>SLA</td>
<td>KPUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-09A</td>
<td></td>
<td>47.67851727</td>
<td>-122.5565762</td>
<td>65</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-32C01</td>
<td></td>
<td>47.6199253</td>
<td>-122.57631</td>
<td>50</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>24N/02E-3D02</td>
<td></td>
<td>47.6056831</td>
<td>-122.5431455</td>
<td>153</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>24N/02E-0S02</td>
<td>AAB455</td>
<td>47.6727778</td>
<td>-122.5463889</td>
<td>87</td>
<td>SLA</td>
<td>KPUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>24N/02E-0S02</td>
<td>AAB455</td>
<td>47.6727778</td>
<td>-122.5463889</td>
<td>87</td>
<td>SLA</td>
<td>KPUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Bainbridge WS Well 7</td>
<td>24N/02E-04A02</td>
<td>ACH364</td>
<td>47.604519</td>
<td>-122.544978</td>
<td>88</td>
<td>SLA</td>
<td>KPUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Bainbridge WS Well 8</td>
<td>24N/02E-04A09</td>
<td>ACW040</td>
<td>47.604461</td>
<td>-122.54564</td>
<td>68</td>
<td>SLA</td>
<td>KPUD - PRODUCTION ONLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Bainbridge WS Well 9</td>
<td>24N/02E-04A10</td>
<td>APP319</td>
<td>47.604033</td>
<td>-122.545111</td>
<td>71</td>
<td>SLA</td>
<td>KPUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-3A1</td>
<td></td>
<td>47.6315695</td>
<td>-122.52319</td>
<td>212</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Port Madison Water System</td>
<td>26N/02E-34E04</td>
<td>ACH800</td>
<td>47.7032265</td>
<td>-122.53834</td>
<td>67</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wing Point COBI</td>
<td>25N/02E-26B01</td>
<td></td>
<td>47.62926389</td>
<td>-122.5013139</td>
<td>128</td>
<td>SLA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battle Point Park</td>
<td>25N/02E-08B02</td>
<td>AAS558</td>
<td>47.66583333</td>
<td>-122.5775</td>
<td>130</td>
<td>GMA</td>
<td>KPUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-29P01</td>
<td></td>
<td>47.6220935</td>
<td>-122.57724</td>
<td>65</td>
<td>GMA</td>
<td>KPUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPA/Wyckoff</td>
<td>25N/02E-3SH</td>
<td>AFR832</td>
<td>47.61554031</td>
<td>-122.5036165</td>
<td>15</td>
<td>GMA</td>
<td>KPUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>26N/02E-2BB03</td>
<td>ACH107</td>
<td>47.709839</td>
<td>-122.54762</td>
<td>95</td>
<td>GMA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>25N/02E-34H02</td>
<td></td>
<td>47.6166937</td>
<td>-122.52489</td>
<td>54</td>
<td>GMA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taylor Road Well</td>
<td>25N/02E-35G03</td>
<td>ACH879</td>
<td>47.61527778</td>
<td>-122.5088889</td>
<td>15</td>
<td>GMA</td>
<td>COBI-O&M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bloedel Deep Well</td>
<td>26N/02E-33B03</td>
<td>ACH606</td>
<td>47.70472222</td>
<td>-122.547778</td>
<td>180</td>
<td>FBA</td>
<td>KPUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fletcher Bay Observation Well</td>
<td>25N/02E-20K03</td>
<td>AAA111</td>
<td>47.64055555</td>
<td>-122.5741667</td>
<td>80</td>
<td>FBA</td>
<td>KPUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fletcher Bay PW</td>
<td>25N/02E-20K04</td>
<td>ACH733</td>
<td>47.6408333</td>
<td>-122.574056</td>
<td>85</td>
<td>FBA</td>
<td>COBI-O&M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Island Utilities Well 1</td>
<td>25N/02E-34F07</td>
<td>AAA109</td>
<td>47.61638891</td>
<td>-122.535</td>
<td>144</td>
<td>FBA</td>
<td>KPUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Island Utilities Well 2</td>
<td>25N/02E-34F12</td>
<td>AAC113</td>
<td>47.61638889</td>
<td>-122.535</td>
<td>144</td>
<td>FBA</td>
<td>KPUD - PRODUCTION ONLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meigs Farm</td>
<td>25N/02E-15J02</td>
<td>AAA112</td>
<td>47.6565492</td>
<td>-122.52415</td>
<td>49</td>
<td>FBA</td>
<td>KPUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Bainbridge Well 09</td>
<td>25N/02E-09G04</td>
<td>AAB455</td>
<td>47.6705558</td>
<td>-122.543334</td>
<td>125</td>
<td>FBA</td>
<td>KPUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Bainbridge Well 10</td>
<td>25N/02E-11E</td>
<td>ACH110</td>
<td>47.6733333</td>
<td>-122.519722</td>
<td>351</td>
<td>FBA</td>
<td>KPUD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sands Road 1</td>
<td>25N/02E-21J06</td>
<td>ACH875</td>
<td>47.64043056</td>
<td>-122.549639</td>
<td>165</td>
<td>FBA</td>
<td>COBI-O&M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sands Road 2</td>
<td>25N/02E-21J07</td>
<td>ACH876</td>
<td>47.6437</td>
<td>-122.547279</td>
<td>170</td>
<td>FBA</td>
<td>COBI-O&M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seabold, Chloride</td>
<td>26N/02E-33E</td>
<td>ALA779</td>
<td>47.70202778</td>
<td>-122.5613889</td>
<td>115</td>
<td>FBA</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Island Utilities Well 3</td>
<td>25N/02E-34F04</td>
<td>AAS286</td>
<td>47.671133</td>
<td>-122.5357</td>
<td>144</td>
<td>FBA</td>
<td>KPUD - PRODUCTION ONLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>24N/02E-11G02</td>
<td></td>
<td>47.5858598</td>
<td>-122.50683</td>
<td>264</td>
<td>BED</td>
<td>COBI-Eng</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix A: Purpose and Definition of EWLs

A.1 Purpose
This discussion uses the safe yield EWL for demonstration. The purpose of specifying EWLs is to provide quantifiable measures for the initial evaluation of data. An EWL is a monitoring criteria that, if exceeded, would result in the need for additional sequential monitoring and investigative activities to confirm or rule out a developing problem.

Analogy: During your annual physical, your blood pressure reading may exceed the normal range. This is an exceedance of a screening criteria that leads your doctor to examine other criteria such as your height, weight, resting heart rate, any medications you are taking, your health history, and your family’s health history. He/she will also ask you about your daily routine such as sleep, diet, and exercise, and may conduct further testing. This additional testing and examination is needed in order to confirm or rule-out a true blood pressure problem. The initial high blood pressure reading, by itself, does not confirm that you have a high blood pressure problem.

Likewise, an exceedance of the safe yield EWL calls for additional data evaluation, expanded monitoring, problem specific technical review and analysis, or modeling to confirm or rule-out long-term water use exceeding the aquifer’s safe yield. The initial exceedance of the safe yield EWL, by itself, is not a confirmation of long-term water use exceeding the safe yield.

A.2 Definition
The definition of the EWL for safe yield is a long-term drop in water level equal to 1/2 foot per year or greater over a ten-year period that is not attributable to seasonal or year-to-year variations in precipitation. This means that if a drop in water level can be attributed to seasonal or year-to-year variations in precipitation (such as the 2015 unusually hot, dry summer), it is not a confirmation of long-term water use exceeding the aquifer’s safe yield.

Continuing the analogy: Through discussing your daily routine with you, your doctor discovers that, although you and your family have no history of high blood pressure and you usually follow a very healthy daily routine, you got very little sleep the night before followed by a particularly stressful morning just prior to the blood pressure test. He/she directs you to return to your normal daily routine and come back in a week for re-testing. The following week, you return for re-testing, and re-testing shows your blood pressure has returned to normal. Retesting ruled out a high blood pressure problem.

Likewise, comparing water levels to rainfall patterns through the use of the CDP curve can identify when water level declines can be attributed to seasonal dry periods rather than long-term over use of the aquifer (see well hydrographs with CDP curve in Appendix B).
Appendix B: Well Hydrographs

As this is an assessment of data against the EWLs and not an in-depth hydrogeological assessment of historical water level, quality and production, the hydrographs presented here span only the current 10-year period of assessment (2007 – 2016).

Water level data were plotted as monthly averages, and water level trend calculations were based on an ordinary least squares fit to monthly averages of all static water level data.

It is important to note that reviewing multiple data sets over a constrained period of time such as the ten-year period specified in the safe yield EWL can be useful, but it has some limitations, as well. One significant limitation is that it isolates the current ten-year period from the longer, historical record, where such exists, that may reveal that the current increasing or declining trend may be part of a natural, longer-term fluctuation in water level and not a long-term trend. It is important to consider the longer-term record of all water levels, where such exists, when conducting follow up investigation.
This chart displays a summary of water level data presented as a monthly average. Static water level data for Bainbridge Island Landfill spans 9 years, which included a maximum data collection gap (in months) of 10.3. Estimated static water level trend is -0.37 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average. Static water level data for Battle Point Park spans 10 years, which included a maximum data collection gap (in months) of 4.6. Estimated static water level trend is 0.5 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- **Static Water Level**
- **Water level influenced by pumping**

Chloride Results
- **Chloride Concentration**
This chart displays a summary of water level data presented as a monthly average. Static water level data for Bill Point Water Well 3 spans 10 years, which included a maximum data collection gap (in months) of 7.5. Estimated static water level trend is 0.12 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average. Static water level data for Bloedel Reserve Deep Well spans 10 years, which included a maximum data collection gap (in months) of 6.2. Estimated static water level trend is 0.13 ft/year. Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
- Water level influenced by pumping

Chloride Results
- Chloride Concentration
This chart displays a summary of water level data presented as a monthly average.
Static water level data for Bloedel Reserve Farm Well spans 10 years, which included a maximum data collection gap (in months) of: 2.3. Estimated static water level trend is 0.22 (ft/year).
Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.
Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
• Static Water Level
This chart displays a summary of water level data presented as a monthly average.
Static water level data for Casey Street Water System spans 10 years, which included a maximum data collection gap (in months) of 10.3. Estimated static water level trend is 0.59 (ft/year).
Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.
Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average. Static water level data for Cedar Lane Water System spans 2 years, which included a maximum data collection gap (in months) of 1.4. No early warning level assessment applied due to insufficient data (at least 8 years of data required). 2 years of data available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average.

Static water level data for Eagledale Park spans 9 years, which included a maximum data collection gap (in months) of: 10.3. Estimated static water level trend is 0.01 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average.

Static water level data for EPA/Wyckoff spans 10 years, which included a maximum data collection gap (in months) of: 10.4. Estimated static water level trend is 0.02 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level

Chloride Results
- Chloride Concentration
Well Summary - Fay Bainbridge Park (SLA Aquifer)

This chart displays a summary of water level data presented as a monthly average.
Static water level data for Fay Bainbridge Park spans 9 years, which included a maximum data collection gap (in months) of: 10.2. Estimated static water level trend is 0.27 (ft/year).
Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.
Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average.

Static water level data for Ferncliff Water Assoc. spans 10 years, which included a maximum data collection gap (in months) of: 10.6. Estimated static water level trend is 0.25 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
Well Summary - Fletcher Bay Observation Well (FBA Aquifer)

This chart displays a summary of water level data presented as a monthly average. Static water level data for Fletcher Bay Observation Well spans 10 years, which included a maximum data collection gap (in months) of 8.7. Estimated static water level trend is 0.31 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

- **Water Level Measurement Status**
 - Static Water Level
 - Water level influenced by pumping

- **Chloride Results**
 - Chloride Concentration
This chart displays a summary of water level data presented as a monthly average. Static water level data for Fletcher Bay PW spans 10 years, which included a maximum data collection gap (in months) of 2.5. Estimated static water level trend is 0.39 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average. Static water level data for Former KPUD Island Center TW spans 10 years, which included a maximum data collection gap (in months) of: 5.4. Estimated static water level trend is 0.03 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
- Water level influenced by pumping

Chloride Results
- Chloride Concentration

Graph Key
- ▲ Chloride Concentration

Graph Details
- Well Summary - Former KPUD Island Center TW (SLA Aquifer)
This chart displays a summary of water level data presented as a monthly average. Static water level data for Harbor Crest spans 10 years, which included a maximum data collection gap (in months) of 3.2. Estimated static water level trend is -0.41 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average. Static water level data for Head of the Bay Well #1 spans 6 years, which included a maximum data collection gap (in months) of 19.6. No early warning level assessment applied due to insufficient data (at least 8 years of data required). 6 years of data available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending sections indicate wetter than average periods with greater recharge.
Well Summary - Head of the Bay Well #1A (SLA Aquifer)

This chart displays a summary of water level data presented as a monthly average. Static water level data for Head of the Bay Well #1A are not available, including a maximum data collection gap (in months) of: None. No early warning level assessment applied due to insufficient data (at least 8 years of data required). None available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status Chloride Results

Chloride Concentration
This chart displays a summary of water level data presented as a monthly average. Static water level data for Head of the Bay Well #2 spans 4 years, which included a maximum data collection gap (in months) of 1.1. No early warning level assessment applied due to insufficient data (at least 8 years of data required). 4 years of data available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
- Water level influenced by pumping

Chloride Results
- Chloride Concentration
This chart displays a summary of water level data presented as a monthly average. Static water level data for Head of the Bay Well #3 spans 4 years, which included a maximum data collection gap (in months) of: 1.1. No early warning level assessment applied due to insufficient data (at least 8 years of data required). 4 years of data available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

<table>
<thead>
<tr>
<th>Water Level Measurement Status</th>
<th>Chloride Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Water Level</td>
<td>Chloride Concentration</td>
</tr>
<tr>
<td>Water level influenced by pumping</td>
<td></td>
</tr>
</tbody>
</table>
This chart displays a summary of water level data presented as a monthly average. Static water level data for Head of the Bay Well #4 are not available, including a maximum data collection gap (in months) of: None. No early warning level assessment applied due to insufficient data (at least 8 years of data required). None available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
Well Summary - Head of the Bay Well #5 (SLA Aquifer)

This chart displays a summary of water level data presented as a monthly average. Static water level data for Head of the Bay Well #5 spans 4 years, which included a maximum data collection gap (in months) of 11. No early warning level assessment applied due to insufficient data (at least 8 years of data required). 4 years of data available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
- Water level influenced by pumping

Chloride Results
- Chloride Concentration
This chart displays a summary of water level data presented as a monthly average. Static water level data for Head of the Bay Well #6 are not available, including a maximum data collection gap (in months) of: None. No early warning level assessment applied due to insufficient data (at least 8 years of data required). None available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average. Static water level data for Hidden Cove Utilities Shop spans 9 years, which included a maximum data collection gap (in months) of: 12.1. Estimated static water level trend is -0.08 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level

Chloride Results
- Chloride Concentration
This chart displays a summary of water level data presented as a monthly average. Static water level data for High School Well #2/Commodore spans 8 years, which included a maximum data collection gap (in months) of: 1.5. Estimated static water level trend is 0.23 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average. Static water level data for Island Utilities MW spans 10 years, which included a maximum data collection gap (in months) of: 4.2. Estimated static water level trend is -0.34 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

<table>
<thead>
<tr>
<th>Water Level Measurement Status</th>
<th>Chloride Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Water Level</td>
<td>Chloride Concentration</td>
</tr>
</tbody>
</table>
This chart displays a summary of water level data presented as a monthly average. Static water level data for Island Utilities Well 1 spans 10 years, which included a maximum data collection gap (in months) of 26. Estimated static water level trend is -0.69 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

This chart displays chloride concentration data, which is indicative of water quality. Chloride concentration data is shown as a monthly average over the same period as the water level data. Estimated chloride concentration trend is 0.05 (mg/L/year).

Chloride concentration trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all chloride concentration data.

Water level influenced by pumping is also indicated on the chart, showing periods where water levels were affected by pumping activities.
This chart displays a summary of water level data presented as a monthly average. Static water level data for Island Utilities Well 2 are not available, including a maximum data collection gap (in months) of: None. No early warning level assessment applied due to insufficient data (at least 8 years of data required). None available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status

Chloride Results

Chloride Concentration
This chart displays a summary of water level data presented as a monthly average.
Static water level data for Island Utilities Well 3 are not available, including a maximum data collection gap (in months) of: None. No early warning level assessment applied due to insufficient data (at least 8 years of data required). None available.
Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.
Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
Chloride Results

Chloride Concentration
This chart displays a summary of water level data presented as a monthly average. Static water level data for Johnson Farm spans 10 years, which included a maximum data collection gap (in months) of: 10.3. Estimated static water level trend is 0.07 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average. Static water level data for Meigs Farm spans 10 years, which included a maximum data collection gap (in months) of: 2.5. Estimated static water level trend is 0.13 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average.

Static water level data for Messenger House spans 10 years, which included a maximum data collection gap (in months) of 10.3. Estimated static water level trend is 0.08 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

<table>
<thead>
<tr>
<th>Water Level Measurement Status</th>
<th>Chloride Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Water Level</td>
<td>Chloride Concentration</td>
</tr>
</tbody>
</table>
This chart displays a summary of water level data presented as a monthly average.
Static water level data for North Bainbridge Well 01 spans 10 years, which included a maximum data collection gap (in months) of: 3.0. Estimated static water level trend is 0.08 (ft/year).
Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.
Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status **Chloride Results**
- Static Water Level
- Chloride Concentration
This chart displays a summary of water level data presented as a monthly average. Static water level data for North Bainbridge Well 03 spans 10 years, which included a maximum data collection gap (in months) of: 7.7. Estimated static water level trend is 0.06 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average. Static water level data for North Bainbridge Well 06 spans 10 years, which included a maximum data collection gap (in months) of 2.5. Estimated static water level trend is -0.02 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- O Static Water Level
- ▲ Chloride Concentration
- ▼ Water level influenced by pumping
This chart displays a summary of water level data presented as a monthly average. Static water level data for North Bainbridge Well 07 spans 9 years, which included a maximum data collection gap (in months) of 8.3. Estimated static water level trend is 0.39 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
- Water level influenced by pumping

Chloride Results
- Chloride Concentration

Water Level Elevation (ft above sea level)

<table>
<thead>
<tr>
<th>Year</th>
<th>Static Water Level</th>
<th>Chloride Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This chart displays a summary of water level data presented as a monthly average. Static water level data for North Bainbridge Well 08 spans 10 years, which included a maximum data collection gap (in months) of 2.8. Estimated static water level trend is 0.21 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average. Static water level data for North Bainbridge Well 09 spans 10 years, which included a maximum data collection gap (in months) of 15.2. Estimated static water level trend is -0.4 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average. Static water level data for North Bainbridge Well 10 spans 10 years, which included a maximum data collection gap (in months) of: 4.4. Estimated static water level trend is -0.01 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average.
Static water level data for Onorato Water System spans 10 years, which included a maximum data collection gap (in months) of: 10.3. Estimated static water level trend is 0.11 (ft/year).
Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.
Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

<table>
<thead>
<tr>
<th>Water Level Measurement Status</th>
<th>Chloride Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Water Level</td>
<td>Chloride Concentration</td>
</tr>
</tbody>
</table>
This chart displays a summary of water level data presented as a monthly average. Static water level data for Sands Road 1 spans 10 years, which included a maximum data collection gap (in months) of 1.2. Estimated static water level trend is 0.37 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

- **Water Level Measurement Status**
 - Static Water Level
 - Water level influenced by pumping

- **Chloride Results**
 - Chloride Concentration
This chart displays a summary of water level data presented as a monthly average. Static water level data for Sands Road 2 spans 10 years, which included a maximum data collection gap (in months) of: 15.5. Estimated static water level trend is -0.08 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average. Static water level data for Seabold, Chloride are not available, including a maximum data collection gap (in months) of: None. No early warning level assessment applied due to insufficient data (at least 8 years of data required). None available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status Chloride Results

Chloride Concentration
This chart displays a summary of water level data presented as a monthly average.
Static water level data for Sebold Water spans 10 years, which included a maximum data collection gap (in months) of: 10.2. Estimated static water level trend is 0.68 (ft/year).
Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.
Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

<table>
<thead>
<tr>
<th>Water Level Measurement Status</th>
<th>Chloride Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Water Level</td>
<td>Chloride Concentration</td>
</tr>
</tbody>
</table>
Well Summary - South Bainbridge WS Well 7 (SLA Aquifer)

This chart displays a summary of water level data presented as a monthly average. Static water level data for South Bainbridge WS Well 7 are not available, including a maximum data collection gap (in months) of: None. No early warning level assessment applied due to insufficient data (at least 8 years of data required). None available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status

Chloride Results

Chloride Concentration
Well Summary - South Bainbridge WS Well 8 (SLA Aquifer)

This chart displays a summary of water level data presented as a monthly average. Static water level data for South Bainbridge WS Well 8 are not available, including a maximum data collection gap (in months) of: None. No early warning level assessment applied due to insufficient data (at least 8 years of data required). None available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status Chloride Results
 Chloride Concentration
Well Summary - South Bainbridge WS Well 9 (SLA Aquifer)

This chart displays a summary of water level data presented as a monthly average. Static water level data for South Bainbridge WS Well 9 are not available, including a maximum data collection gap (in months) of: None. No early warning level assessment applied due to insufficient data (at least 8 years of data required). None available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.
Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status

Chloride Results

Chloride Concentration
This chart displays a summary of water level data presented as a monthly average.

Static water level data for Tara Lane Community Well spans 10 years, which included a maximum data collection gap (in months) of: 10.2. Estimated static water level trend is -0.04 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
Well Summary - Taylor Road Well (GMA Aquifer)

This chart displays a summary of water level data presented as a monthly average. Static water level data for Taylor Road Well spans 10 years, which included a maximum data collection gap (in months) of 14. Estimated static water level trend is 0.03 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status Chloride Results
static Water Level _Chloride Concentration_
water level influenced by pumping
This chart displays a summary of water level data presented as a monthly average.

Static water level data for West Port Madison Water System spans 2 years, which included a maximum data collection gap (in months) of: 1.9. No early warning level assessment applied due to insufficient data (at least 8 years of data required). 2 years of data available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average. Static water level data for Wing Point COBI spans 10 years, which included a maximum data collection gap (in months) of: 10.2. Estimated static water level trend is -0.37 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status

- Static Water Level
This chart displays a summary of water level data presented as a monthly average.

Static water level data for 24N/02E-3D02 spans 10 years, which included a maximum data collection gap (in months) of: 10.2. Estimated static water level trend is 0.04 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

<table>
<thead>
<tr>
<th>Water Level Measurement Status</th>
<th>Chloride Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Water Level</td>
<td>Chloride Concentration</td>
</tr>
</tbody>
</table>
Well Summary - 24N/02E-04H01 (PA Aquifer)

This chart displays a summary of water level data presented as a monthly average.

Static water level data for 24N/02E-04H01 spans 10 years, which included a maximum data collection gap (in months) of: 10.3. Estimated static water level trend is 0.04 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level

Chloride Results
- Chloride Concentration
This chart displays a summary of water level data presented as a monthly average.

Static water level data for 24N/02E-05K01 spans 10 years, which included a maximum data collection gap (in months) of: 10.2. Estimated static water level trend is 0.24 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average.

Static water level data for 24N/02E-05K02 spans 10 years, which included a maximum data collection gap (in months) of 10.2. Estimated static water level trend is 0.02 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average. Static water level data for 24N/02E-05K03 spans 10 years, which included a maximum data collection gap (in months) of 10.2. Estimated static water level trend is 0.12 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average. Static water level data for 24N/02E-11G02 spans 10 years, which included a maximum data collection gap (in months) of 10.2. Estimated static water level trend is -0.26 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average.
Static water level data for 25N/02E-03G01 spans 10 years, which included a maximum data collection gap (in months) of: 10.3. Estimated static water level trend is 0.17 (ft/year).
Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.
Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average.
Static water level data for 25N/02E-04B01 spans 10 years, which included a maximum data collection gap (in months) of 10.2. Estimated static water level trend is 0.24 (ft/year).
Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.
Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level

Chloride Results
- Chloride Concentration
Well Summary - 25N/02E-04D01 (PA Aquifer)

This chart displays a summary of water level data presented as a monthly average. Static water level data for 25N/02E-04D01 spans 10 years, which included a maximum data collection gap (in months) of: 10.2. Estimated static water level trend is 0.46 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average.

Static water level data for 25N/02E-4M02 spans 10 years, which included a maximum data collection gap (in months) of: 10.2. Estimated static water level trend is 0.28 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average.

Static water level data for 25N/02E-08G03 spans 10 years, which included a maximum data collection gap (in months) of: 10.4. Estimated static water level trend is 0.11 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

<table>
<thead>
<tr>
<th>Water Level Measurement Status</th>
<th>Chloride Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Water Level</td>
<td>Chloride Concentration</td>
</tr>
</tbody>
</table>
This chart displays a summary of water level data presented as a monthly average.

Static water level data for 25N/02E-09D01 spans 10 years, which included a maximum data collection gap (in months) of: 10.3. Estimated static water level trend is 0.15 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average.
Static water level data for 25N/02E-09L spans 10 years, which included a maximum data collection gap (in months) of: 10.2. Estimated static water level trend is 0.1 (ft/year).
Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.
Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average.

Static water level data for 25N/02E-10E spans 10 years, which included a maximum data collection gap (in months) of: 10.3. Estimated static water level trend is 0.16 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average. Static water level data for 25N/02E-17D spans 10 years, which included a maximum data collection gap (in months) of: 10.4. Estimated static water level trend is 0.21 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level

Chloride Results
- Chloride Concentration
This chart displays a summary of water level data presented as a monthly average.

Static water level data for 25N/02E-17G01 spans 10 years, which included a maximum data collection gap (in months) of: 10.4. Estimated static water level trend is 0.25 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average. Static water level data for 25N/02E-20D spans 10 years, which included a maximum data collection gap (in months) of: 10.2. Estimated static water level trend is 0.04 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

<table>
<thead>
<tr>
<th>Water Level Measurement Status</th>
<th>Chloride Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Water Level</td>
<td>Chloride Conc.</td>
</tr>
</tbody>
</table>
This chart displays a summary of water level data presented as a monthly average.

Static water level data for 25N/02E-20L07 spans 10 years, which included a maximum data collection gap (in months) of: 10.2. Estimated static water level trend is 0.04 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average.

Static water level data for 25N/02E-20P2 spans 10 years, which included a maximum data collection gap (in months) of: 10.2. Estimated static water level trend is 0.15 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average.

Static water level data for 25N/02E-21B spans 9 years, which included a maximum data collection gap (in months) of 10.2. Estimated static water level trend is 0.29 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average. Static water level data for 25N/02E-21P03 spans 10 years, which included a maximum data collection gap of 28.3 months. Estimated static water level trend is -0.42 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

<table>
<thead>
<tr>
<th>Water Level Measurement Status</th>
<th>Chloride Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Water Level</td>
<td>Chloride Results</td>
</tr>
</tbody>
</table>
This chart displays a summary of water level data presented as a monthly average. Static water level data for 25N/02E-22C01 spans 10 years, which included a maximum data collection gap (in months) of 10.3. Estimated static water level trend is -0.2 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
Well Summary - 25N/02E-23G (SLA Aquifer)

This chart displays a summary of water level data presented as a monthly average.
Static water level data for 25N/02E-23G spans 2 years, which included a maximum data collection gap (in months) of: 1.9. No early warning level assessment applied due to insufficient data (at least 8 years of data required). 2 years of data available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.
Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

- **Water Level Measurement Status**
 - Static Water Level

- **Chloride Results**
 - Chloride Concentration
This chart displays a summary of water level data presented as a monthly average. Static water level data for 25N/02E-23Q03 spans 10 years, which included a maximum data collection gap (in months) of: 10.3. Estimated static water level trend is 0.23 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average. Static water level data for 25N/02E-28N02 spans 10 years, which included a maximum data collection gap (in months) of 10.3. Estimated static water level trend is 0.3 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average. Static water level data for 25N/02E-29C spans 10 years, which included a maximum data collection gap (in months) of: 10.2. Estimated static water level trend is 0.06 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status

- Static Water Level
This chart displays a summary of water level data presented as a monthly average.

Static water level data for 25N/02E-29P01 spans 10 years, which included a maximum data collection gap (in months) of: 10.2. Estimated static water level trend is -0.22 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

<table>
<thead>
<tr>
<th>Water Level Measurement Status</th>
<th>Chloride Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Water Level</td>
<td>Chloride Concen.</td>
</tr>
</tbody>
</table>
This chart displays a summary of water level data presented as a monthly average. Static water level data for 25N/02E-32C01 spans 2 years, which included a maximum data collection gap (in months) of: 1.4. No early warning level assessment applied due to insufficient data (at least 8 years of data required). 2 years of data available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level

Chloride Results
- Chloride Concentration
This chart displays a summary of water level data presented as a monthly average.
Static water level data for 25N/02E-33B02 spans 10 years, which included a maximum data collection gap (in months) of: 10.3. Estimated static water level trend is 0.09 (ft/year).
Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.
Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status

- Static Water Level
This chart displays a summary of water level data presented as a monthly average. Static water level data for 25N/02E-33F01 spans 10 years, which included a maximum data collection gap (in months) of: 10.3. Estimated static water level trend is 0.17 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status

- Static Water Level
This chart displays a summary of water level data presented as a monthly average. Static water level data for 25N/02E-34H02 spans 2 years, which included a maximum data collection gap (in months) of 12. No early warning level assessment applied due to insufficient data (at least 8 years of data required). 2 years of data available.

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
Well Summary - 25N/02E-34J (SLA Aquifer)

This chart displays a summary of water level data presented as a monthly average.

Static water level data for 25N/02E-34J spans 9 years, which included a maximum data collection gap (in months) of: 10.3. Estimated static water level trend is 0.26 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average. Static water level data for 25N/02E-35M03 spans 10 years, which included a maximum data collection gap (in months) of 10.4. Estimated static water level trend is 0.13 (ft/year). Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data. Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending segments typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

Water Level Measurement Status
- Static Water Level
This chart displays a summary of water level data presented as a monthly average.
Static water level data for 26N/02E-28B03 spans 10 years, which included a maximum data collection gap (in months) of: 10.4. Estimated static water level trend is 0.32 (ft/year).
Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.
Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
This chart displays a summary of water level data presented as a monthly average.

Static water level data for 26N/02E-28G01 spans 10 years, which included a maximum data collection gap (in months) of: 87.5. Estimated static water level trend is 0.43 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.

<table>
<thead>
<tr>
<th>Water Level Measurement Status</th>
<th>Chloride Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Water Level</td>
<td>Chloride Results</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Static Water Level</th>
<th>Chloride Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This chart displays a summary of water level data presented as a monthly average.

Static water level data for 26N/02E-34R01 spans 10 years, which included a maximum data collection gap (in months) of 10.3. Estimated static water level trend is 0 (ft/year).

Water level trend calculations are based on an ordinary least squares (OLS) fit to the monthly average of all static water level data.

Cumulative Departure Precipitation (CDP) represents the running total of monthly differences from the average over the period. Downward trending sections typically indicate drier periods with lowered recharge, while upward trending segments indicate wetter than average periods with greater recharge.
Appendix C: Historic Chloride Concentrations

In 2006, Aspect Consulting reviewed available groundwater data in order to establish baseline conditions for the Island (Aspect, 2006). As part of this work, Aspect screened historic chloride concentrations to identify geographical areas and particular aquifers that may be more vulnerable to seawater intrusion. The results of that work were later used to establish the City's network of potential seawater intrusion monitoring wells.

Aspect used a conservative initial screening value of 40 mg/L to determine relative risk, considering a background concentration of 10 mg/L reported in the WRIA 15 Water Quality Assessment Report (Golder, 2003), concentrations observed by USGS in wells completed above sea level and, therefore, generally not vulnerable to seawater intrusion (20-30 mg/L) (Dion and others, 1988), and Ecology's EWL of 100 mg/L (Ecology, 1990). 11 wells had at least one measured concentration above 40 mg/L, helping to identify which areas may be at higher risk for seawater intrusion. However, only five of these 11 wells had historic chloride concentrations that exceed the EWL of 100 mg/L.

Out of those five wells with historic chloride concentrations that exceed the EWL of 100 mg/L, two were determined to be anomalies as post sampling results were all <7 mg/L. The remaining three only had a one-time measurement with no prior or post samples for comparison. However, routine programmatic chloride sampling in wells in the region in the same aquifer do not exhibit elevated chloride concentrations. Should future results become available for the three remaining wells or nearby wells that exceed the EWL, follow-up sampling and investigation will be warranted in accordance with the Groundwater Management Program's Groundwater Monitoring Program Update (Aspect, 2009).

In 2006, prior to the establishment of the City's Groundwater Monitoring Program, chloride concentrations in a small public well in the Sea Level Aquifer in the Seabold area measured 1,003 mg/L as part of data gathering in support of USGS's development of the Bainbridge Island groundwater model. Follow-up sampling results measured 1,010 mg/L chloride. The well was shut down, and a new well was drilled into the Fletcher Bay Aquifer. Chloride concentrations in the new well are well below the EWL.

The City continues to monitor water level in the abandoned well and, in partnership with KPUD and KPHD, is currently investigating the area in accordance with program guidance (Aspect, 2009).